High birefringence and broadband dispersion compensation photonic crystal fiber

Author:- Md. Mahbub Hossain, Md. Shamim Ahsan, Niloy Sikder, Md. Ekhlasur Rahaman, Abdullah Al-Mamun Bulbul and Himadri Shekhar Mondal
Category:- Journal; Year:- 2021
Discipline:- Electronics and Communication Engineering Discipline
School:- Science, Engineering & Technology School

Abstract

We propose a perfectly square lattice photonic crystal fiber (PCF) which shows high birefringence and negative dispersion. To set up high asymmetry in the core, dual line imperfection is considered where the fill fraction ratio and defect air hole diameter exhibit significant impact on dispersion and birefringence. Numerical analyses of guiding properties of the proposed PCF are done using finite element method with perfectly matched layer boundary condition from 1.2 to 1.8 μm wavelength. The optimized square lattice PCF presents high birefringence of 2.48 × 10−2 and dispersion of −777.66 (ps/nm.km) at 1.55 μm wavelength. In addition, the proposed PCF offers ultra-low confinement and insertion loss at 1.55 μm wavelength. Moreover, −0.45 (ps/nm2.km) dispersion slope and 0.0045 nm−1 relative dispersion slope are observed at 1.55 μm wavelength. Additionally, the proposed PCF maintains dispersion and birefringence variation of ±30 (ps/nm.km) and ±0.00001 between 1.5 and 1.6 μm wavelength ranges, respectively. Furthermore, the proposed PCF shows high quality factor and low bit error rate at 10 dBm input power. We believe the proposed square lattice PCF can be deployed in wavelength division multiplexing based optical fiber transmission system for wide-band dispersion compensation.

Read More