Machine learning algorithm for characterizing risks of hypertension, at an early stage in Bangladesh

Author:- Md. Merajul Islam, Md. Jahanur Rahman, Dulal Chandra Roy, Most. Tawabunnahar, Rubaiyat Jahan, N.A.M. Faisal Ahmed, Md. Maniruzzaman
Category:- Journal; Year:- 2021
Discipline:- Statistics Discipline
School:- Science, Engineering & Technology School


Background and aims Hypertension has become a major public health issue as the prevalence and risk of premature death and disability among adults due to hypertension has increased globally. The main objective is to characterize the risk factors of hypertension among adults in Bangladesh using machine learning (ML) algorithms. Materials and methods The hypertension data was derived from Bangladesh demographic and health survey, 2017–18, which included 6965 people aged 35 and above. Two most promising risk factor identification methods, namely least absolute shrinkage operator (LASSO) and support vector machine recursive feature elimination (SVMRFE) are implemented to detect the critical risk factors of hypertension. Additionally, four well-known ML algorithms as artificial neural network, decision tree, random forest, and gradient boosting (GB) have been used to predict hypertension. Performance scores of these algorithms were evaluated by accuracy, precision, recall, F-measure, and area under the curve (AUC). Results The results clarify that age, BMI, wealth index, working status, and marital status for LASSO and age, BMI, marital status, diabetes and region for SVMRFE appear to be the top-most five significant risk factors for hypertension. Our findings reveal that the combination of SVMRFE-GB gives the maximum accuracy (66.98%), recall (97.92%), F-measure (78.99%), and AUC (0.669) compared to others. Conclusion GB-based algorithm confirms the best performer for prediction of hypertension, at an early stage in Bangladesh. Therefore, this study highly suggests that the policymakers make proper judgments for controlling hypertension using SVMRFE-GB-based combination to save time and reduce cost for Bangladeshi adults.

Read More