MODELLING AND NUMERICAL ANALYSIS OF A HIGHLY-EFFICIENT PCF-BASED AMINO ACID SENSOR

Authors

  • Sandipa Biswas Electronics and Communication Engineering Discipline, Khulna University, Khulna-9208, Bangladesh
  • Mahbubul Hasan Abdullah Electronics and Communication Engineering Discipline, Khulna University, Khulna-9208, Bangladesh
  • S.M. Shahriar Hasan Shawon Electronics and Communication Engineering Discipline, Khulna University, Khulna-9208, Bangladesh
  • Etu Podder Electronics and Communication Engineering Discipline, Khulna University, Khulna-9208, Bangladesh
  • Md. Bellal Hossain Electronics and Communication Engineering Discipline, Khulna University, Khulna-9208, Bangladesh
  • Abdullah Al-Mamun Bulbul Electronics and Communication Engineering Discipline, Khulna University, Khulna-9208, Bangladesh

DOI:

https://doi.org/10.53808/KUS.2022.ICSTEM4IR.0012-se

Keywords:

Amino acids, EML, FEM, relative sensitivity, PCF

Abstract

Amino acids not only play a vital role as protein-building constituents in living beings but also have a wide range of applications that include commercial industries such as food additives and flavor enhancers as well as medical sectors to resist numerous disease levels and to treat digestive abscesses, liver ailments, etc. Hence a precise and feasible detection of amino acids is a fervent desire for their appropriate applications. This paper presents an amino acid sensor employing a mono-circular hollow-core PCF. This PCF-based sensor has been designed maintaining high fabrication feasibility. Then the performance of this sensor has been numerically studied engaging finite element method while sensing five types of amino acids. Performance metric exhibits that this sensor has a very low effective material and confinement loss of about 0.003795 cm-1 and 3.065×10-15 cm-1 correspondingly at 2.7 THz for Tryptophan. Besides this sensor has offered approximately 97.12% relative sensitivity maintaining a higher numerical aperture for the same type of amino acid. This sensor has maintained admirable values for all the performance indices for all the five types of amino acids analyzed in this paper. Furthermore, the elementary design of this sensor has opened the door of viable fabrication with the aid of existing sol-gel technique or extrusion with 3D printing method.

References

Ademgil, H., & Haxha, S. (2015). PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors, 15(12), 31833-31842.

Broeng, J., Mogilevstev, D., Barkou, S. E., & Bjarklev, A. (1999). Photonic crystal fibers: A new class of optical waveguides. Optical Fiber Technology, 5(3), 305-330.

Cordeiro, C. M., Franco, M. A., Chesini, G., Barretto, E. C., Lwin, R., Cruz, C. B., & Large, M. C. (2006). Microstructured-core optical fibre for evanescent sensing applications. Optics express, 14(26), 13056-13066.

El Hamzaoui, H., Ouerdane, Y., Bigot, L., Bouwmans, G., Capoen, B., Boukenter, A., . . . Bouazaoui, M. (2012). Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Optics express, 20(28), 29751-29760.

Hoo, Y., Jin, W., Ho, H. L., Wang, D., & Windele, R. S. (2001). Evanescent wave gas sensing using microstructure fibre. Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No. 01TH8557),

Hossain, M. B., Podder, E., Bulbul, A. A.-M., & Mondal, H. S. (2020). Bane chemicals detection through photonic crystal fiber in THz regime. Optical Fiber Technology, 54, 102102.

Islam, M. S., Sultana, J., Ahmed, K., Islam, M. R., Dinovitser, A., Ng, B. W.-H., & Abbott, D. (2017). A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sensors Journal, 18(2), 575-582.

Islam, M. S., Sultana, J., Dinovitser, A., Faisal, M., Islam, M. R., Ng, B. W.-H., & Abbott, D. (2018). Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Applied optics, 57(4), 666-672.

Kaur, V., & Singh, S. (2017). Extremely sensitive multiple sensing ring PCF sensor for lower indexed chemical detection. Sensing and Bio-Sensing Research, 15, 12-16.

Kiwa, T., Kondo, J., Oka, S., Kawayama, I., Yamada, H., Tonouchi, M., & Tsukada, K. (2008). Chemical sensing plate with a laser-terahertz monitoring system. Applied optics, 47(18), 3324-3327.

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.

Monro, T. M., Belardi, W., Furusawa, K., Baggett, J. C., Broderick, N., & Richardson, D. (2001). Sensing with microstructured optical fibres. Measurement Science and Technology, 12(7), 854.

Otupiri, R., Akowuah, E. K., Haxha, S., Ademgil, H., AbdelMalek, F., & Aggoun, A. (2014). A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics Journal, 6(4), 1-11

Ademgil, H., & Haxha, S. (2015). PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors, 15(12), 31833-31842.

Broeng, J., Mogilevstev, D., Barkou, S. E., & Bjarklev, A. (1999). Photonic crystal fibers: A new class of optical waveguides. Optical Fiber Technology, 5(3), 305-330.

Cordeiro, C. M., Franco, M. A., Chesini, G., Barretto, E. C., Lwin, R., Cruz, C. B., & Large, M. C. (2006). Microstructured-core optical fibre for evanescent sensing applications. Optics express, 14(26), 13056-13066.

El Hamzaoui, H., Ouerdane, Y., Bigot, L., Bouwmans, G., Capoen, B., Boukenter, A., . . . Bouazaoui, M. (2012). Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter. Optics express, 20(28), 29751-29760.

Hoo, Y., Jin, W., Ho, H. L., Wang, D., & Windele, R. S. (2001). Evanescent wave gas sensing using microstructure fibre. Technical Digest. CLEO/Pacific Rim 2001. 4th Pacific Rim Conference on Lasers and Electro-Optics (Cat. No. 01TH8557),

Hossain, M. B., Podder, E., Bulbul, A. A.-M., & Mondal, H. S. (2020). Bane chemicals detection through photonic crystal fiber in THz regime. Optical Fiber Technology, 54, 102102.

Islam, M. S., Sultana, J., Ahmed, K., Islam, M. R., Dinovitser, A., Ng, B. W.-H., & Abbott, D. (2017). A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sensors Journal, 18(2), 575-582.

Islam, M. S., Sultana, J., Dinovitser, A., Faisal, M., Islam, M. R., Ng, B. W.-H., & Abbott, D. (2018). Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Applied optics, 57(4), 666-672.

Kaur, V., & Singh, S. (2017). Extremely sensitive multiple sensing ring PCF sensor for lower indexed chemical detection. Sensing and Bio-Sensing Research, 15, 12-16.

Kiwa, T., Kondo, J., Oka, S., Kawayama, I., Yamada, H., Tonouchi, M., & Tsukada, K. (2008). Chemical sensing plate with a laser-terahertz monitoring system. Applied optics, 47(18), 3324-3327.

Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785.

Monro, T. M., Belardi, W., Furusawa, K., Baggett, J. C., Broderick, N., & Richardson, D. (2001). Sensing with microstructured optical fibres. Measurement Science and Technology, 12(7), 854.

Otupiri, R., Akowuah, E. K., Haxha, S., Ademgil, H., AbdelMalek, F., & Aggoun, A. (2014). A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics Journal, 6(4), 1-11.

Sultana, J., Islam, M. S., Ahmed, K., Dinovitser, A., Ng, B. W.-H., & Abbott, D. (2018). Terahertz detection of alcohol using a photonic crystal fiber sensor. Applied optics, 57(10), 2426-2433.

Downloads

Published

18-10-2022

How to Cite

[1]
S. . Biswas, M. H. . Abdullah, S. S. H. . Shawon, E. . Podder, M. B. . Hossain, and A. A.-M. . Bulbul, “MODELLING AND NUMERICAL ANALYSIS OF A HIGHLY-EFFICIENT PCF-BASED AMINO ACID SENSOR”, Khulna Univ. Stud., pp. 1–7, Oct. 2022.